Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 931: 172687, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663593

RESUMEN

The ever-growing demand for aquaculture has led the industry to seek novel approaches for more sustainable practices. These attempts aim to increase aquaculture yield by increasing energy efficiency and decreasing footprint and chemical demand without compromising animal health. For this, emerging nanobubbles (NBs) aeration technology gained attention. NBs are gas-filled pockets suspended as sphere-like cavities (bulk NBs) or attached to surfaces (surface NBs) with diameters of <1 µm. Compared to macro and microbubbles, NBs have demonstrated unique characteristics such as long residence times in water, higher gas mass transfer efficiency, and hydroxyl radical production. This paper focuses on reviewing NB technology in aquaculture systems by summarizing and discussing uses and implications. Three focus areas were targeted to review the applicability and effects of NBs in aquaculture: (i) NBs aeration to improve the aquaculture harvest yield and subsequent wastewater treatment; (ii) NB application for inactivation of harmful microorganisms; and (iii) NBs for reducing oxidative stress and improving animal health. Thus, this study reviews the research studies published in the last 10 years in which air, oxygen, ozone, and hydrogen NBs were tested to improve gas mass transfer, wastewater treatment, and control of pathogenic microorganisms. The experimental results indicated that air and oxygen NBs yield significantly higher productivity, growth rate, total harvest, survival rate, and less oxygen consumption in fish and shrimp farming. Secondly, the application of air and ozone NBs demonstrated the ability of efficient pollutant degradation. Third, NB application demonstrated effective control of infectious bacteria and viruses, and thus increased fish survival, as well as different gene expression patterns that induce immune responses to infections. Reviewed studies lack robust comparative analyses of the efficacy of macro- and microbubble treatments. Also, potential health and safety implications, as well as economic feasibility through factors such as changes in capital infrastructure, routine maintenance and energy consumption need to be considered and evaluated in parallel to applicability. Therefore, even with a promising future, further studies are needed to confirm the benefits of NB treatment versus conventional aquaculture practices.

2.
Small ; 20(3): e2304547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621039

RESUMEN

The electrogeneration of hydrogen peroxide (H2 O2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H2 O2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (KL a) of 2.6 × 10-2 min-1 compared to 2.7 × 10-4 min-1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H2 O2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.

3.
Biointerphases ; 18(4)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602771

RESUMEN

This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.


Asunto(s)
Fluorocarburos , Aguas del Alcantarillado , Animales , Alcanos/química , Flúor , Maine , Aguas Residuales
4.
Chemosphere ; 330: 138711, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37076084

RESUMEN

Bromide forms toxic brominated disinfection by-products during disinfection. Current bromide removal technologies are often non-specific and costly due to naturally occurring competing anions. A silver-impregnated graphene oxide (GO) nanocomposite is reported here that reduced the amount of Ag needed for Br- removal by increasing its selectivity towards Br-. GO was impregnated with ionic (GO-Ag+) or nanoparticulate Ag (GO-nAg) and compared against Ag+ or unsupported nAg to identify molecular level interactions. In nanopure water, Ag+ and nAg had the highest Br- removal (∼0.89 mol Br-/mol Ag+) followed by GO-nAg at 0.77 mol Br-/mol Ag+. However, under anionic competition, the Ag+ removal was reduced to 0.10 mol Br-/mol Ag+ while all nAg forms retained good Br- removal. To understand the removal mechanism, anoxic experiments were performed to prevent nAg dissolution, which resulted in higher Br- removal for all nAg forms compared to oxic conditions. This suggests that reaction of Br- with the nAg surface is more selective than with Ag+. Finally, jar tests showed that anchoring nAg on GO enhances Ag removal during coagulation/flocculation/sedimentation compared to unsupported nAg or Ag+. Thus, our results identify strategies that can be used to design selective and silver-efficient adsorbents for Br- removal in water treatment.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Contaminantes Químicos del Agua , Bromuros , Plata , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 860: 160524, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574542

RESUMEN

Microplastics (MPs) could act as vectors of organic pollutants such as per- and polyfluoroalkyl substances (PFAS). Therefore, understanding adsorptive interactions are essential steps towards unraveling the fate of PFAS in the natural waters where MPs are ubiquitous. Linear solvation energy relationships (LSER)-based predictive models are utilitarian tools to delineate the complexity of adsorption interactions. However, commonly studied PFAS are in their ionic forms at environmentally relevant conditions and LSER modeling parameters do not account for their ionization. This study aims to develop the first LSER model for the adsorption of PFAS by MPs using a subset of ionizable perfluoroalkyl carboxylic acids (PFCA). The adsorption of twelve PFCAs by polystyrene (PS) MPs was used for model training. The study provided mechanistic insights regarding the impacts of PFCA chain length, PS oxidation state, and water chemistry. Results show that the polarizability and hydrophobicity of anionic PFCA are the most significant contributors to their adsorption by MPs. In contrast, van der Waals interactions between PFCA and water significantly decrease PFCA binding affinity. Overall, LSER is demonstrated as a promising approach for predicting the adsorption of ionizable PFAS by MPs after the correction of Abraham's solute descriptors to account for their ionization.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Adsorción , Poliestirenos , Ácidos Carboxílicos , Agua
6.
J Hazard Mater ; 433: 128770, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364529

RESUMEN

Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Peróxido de Hidrógeno , Oxidantes , Peróxidos , Petróleo/metabolismo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
7.
Bioresour Technol ; 351: 127090, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35358670

RESUMEN

Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Consorcios Microbianos , Oxígeno/análisis , Aguas del Alcantarillado/microbiología
8.
J Colloid Interface Sci ; 607(Pt 1): 720-728, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536932

RESUMEN

HYPOTHESIS: Carbon dioxide nanobubbles can increase effective gas-transfer to solution and enhance buffering capacity given the stable suspension in water of CO2 gas within nanobubbles and the existence of larger gas/water interface. EXPERIMENTS: The physico-chemical properties and responses of CO2 nanobubbles were recorded at different generation times (10, 30, 50, and 70 min) and benchmarked against traditional macrobubbles of CO2 for the same amount of delivered gas. Effective concentration of CO2 was evaluated by measuring the buffer capacity (ß). The size distribution of nanobubbles during the experiments was measured by Nanoparticle Track Analysis. FINDINGS: The mass transfer coefficient (KLa) showed a dramatically increase by 11-fold for the same volume of gas delivered when using nanobubbles. The ß values obtained for nanobubbles were 7 times higher than that of traditional bubbles which can lead to significant source of CO2 availability by using the nanobubble method. Nanobubbles, consequently, undergo mass loss at higher pH corresponding to mass transfer process due to concentration gradient at the surrounding nanobubbles. This is the first report of CO2 nanobubbles buffer capacity evaluation.


Asunto(s)
Nanopartículas , Agua , Dióxido de Carbono
9.
Sci Total Environ ; 793: 148473, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328993

RESUMEN

The purpose of this study is to investigate adsorptive removal of carbamazepine from natural source waters by superfine pulverized powdered activated carbon. Superfine pulverization is becoming an increasingly attractive approach to decrease the diffusion path of a target adsorbate molecule and improve the overall the kinetics of activated carbon adsorption. Here we report the impact of pulverization on powdered activated carbon characteristics, and carbamazepine adsorption behavior in distilled and deionized water and natural organic matter solutions. The superfine pulverization decreased the particle size of activated carbon by 50 folds and the specific surface area by 24%. In addition, the micropore volume of the activated carbon decreased from 0.23 cm3/g to 0.14 cm3/g, while mesopore and macropore volumes increased from 0.15 cm3/g and 0.11 cm3/g to 0.18 cm3/g and 0.48 cm3/g, respectively. In terms of surface chemistry, the oxygen and iron contents of the activated carbon increased notably after pulverization. Despite the decrease in surface area and increase in surface polarity, the pulverization improved the adsorption kinetics especially for short contact times i.e., < 6-h. In general, the dissolved organic carbon concentration negatively influenced the kinetic advantage of superfine pulverized activated carbon. Isotherm results indicated that the parent adsorbent has a higher adsorption capacity than superfine activated carbon in distilled and deionized water and in natural waters. This was attributed to the losses in specific surface area and favorable sorption sites inside micropores. Our literature analysis indicated that unlike the small molecular weight hydrophilic organic compounds, the pseudo-equilibrium adsorption capacity could be increased or at least not deteriorated for hydrophobic molecules (Kow > 3). Therefore, superfine pulverization of PAC can serve as a promising approach to remove micropollutants from natural source waters with a kinetic advantage.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbamazepina , Carbón Orgánico , Cinética , Compuestos Orgánicos , Polvos
10.
Environ Sci Technol ; 55(9): 5608-5619, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881842

RESUMEN

Extensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e., PFAS-laden GAC. Considering the recalcitrance of PFAS molecules in the environment, inadequate disposal (e.g., landfill or incineration) of PFAS-laden GAC may let PFAS back into the aquatic cycle. Therefore, developing approaches for PFAS-laden GAC management present unique opportunities to break its forever circulation within the aqueous environment. This comprehensive review evaluates the past two decades of research on conventional thermal regeneration of GAC and critically analyzes and summarizes the literature on regeneration of PFAS-laden GACs. Optimized thermal regeneration of PFAS-laden GACs may provide an opportunity to employ existing regeneration infrastructure to mineralize the adsorbed PFAS and recover the spent GAC. The specific objectives of this review are (i) to investigate the role of physicochemical properties of PFAS on thermal regeneration, (ii) to assess the changes in regeneration yield as well as GAC physical and chemical structure upon thermal regeneration, and (iii) to critically discuss regeneration parameters controlling the process. This literature review on the engineered regeneration process illustrates the significant promise of this approach that can break the endless environmental cycle of these forever chemicals, while preserving the desired physicochemical properties of the valuable GAC adsorbent.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
11.
J Fish Dis ; 44(4): 359-370, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33559228

RESUMEN

Aquaculture is the fastest growing food-production sector and is vital to food security, habitat restoration and endangered species conservation. One of the continued challenges to the industry is our ability to manage aquatic disease agents that can rapidly decimate operations and are a constant threat to sustainability. Such threats also evolve as microbes acquire resistance and/or new pathogens emerge. The advent of nanotechnology has transformed our approach to fisheries disease management with advances in water disinfection, food conversion, fish health and management systems. In this review, several nano-enabled technology successes will be discussed as they relate to the challenges associated with disease management in the aquaculture sector, with a particular focus on fishes. Future perspectives on how nanotechnology can offer functional approaches for improving disinfection and innovating at the practical space of early warning systems will be discussed. Finally, the importance of "safety by design" approaches to the development of novel commercial nano-enabled products will be emphasized.


Asunto(s)
Acuicultura/métodos , Enfermedades de los Peces/prevención & control , Peces , Nanotecnología/métodos , Animales
12.
Sci Total Environ ; 736: 139690, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32504867

RESUMEN

Microplastic particles and fibers are increasingly being detected in our surface and ground waters as well as within a wide range of aquatic species. Their presence in the environment is largely due to in situ generation from physical and chemical weathering of larger plastics, and thus has left environmental community concerned in the post-banned era of microbead use in personal care products through the passage of Microbead-Free Waters Act in the United States. To improve understanding of secondary microplastic formation, accelerated weathering has been conducted on four materials (high-density polyethylene, high impact polystyrene, nylon 6, and polypropylene) under ultraviolet radiation (equivalent to 44 days in full sun) in simulated seawater. Physical and chemical characterization of the plastics were completed following ultraviolet exposure. This simulated weathering generated microfibers from high-density polyethylene and nylon 6, while high impact polystyrene and polypropylene did not physically degrade. The techniques used were applied to sediment samples containing plastic pellets collected from Cox Creek in Port Comfort, TX (near a large plastics manufacturer), which were purified for analysis and were found to contain microplastics composed of polypropylene and polyethylene. These findings can be used to determine degradation pathways and plastic source tracking, which can facilitate risk assessment and environmental management.

13.
Chemosphere ; 253: 126628, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32464771

RESUMEN

Superfine powdered activated carbon (S-PAC) is an adsorbent material with the promise of properties that allow for rapid adsorption of small molecule contaminants. To explore the potential for rapid adsorption among varying activated carbon types, seven commercially available activated carbons were obtained and pulverized to produce S-PAC particles less than 1 µm in diameter. The carbons were chosen to include several types of common carbons produced from coal precursors as well as a wood-based carbon and a coconut shell-based carbon. In this study, the S-PACs and their parent PACs were tested for the adsorption of three aromatic compounds-2-phenylphenol, biphenyl, and phenanthrene-with and without the presence of natural organic matter (NOM). Adsorption rates were increased for adsorption onto S-PAC as compared to PAC in all trials without NOM and in most trials with NOM. Faster adsorption onto S-PAC was found to be a result of a smaller particle size, lower surface oxygen content, larger pore diameters, and neutral pHPZC. Adsorption of a planar compound, phenanthrene, increased the most between PAC and S-PAC, while adsorption of 2-phenylphenol, a nonplanar compound, was impacted the least. Phenanthrene additionally was minimally impacted by the presence of NOM while 2-phenylphenol adsorption declined severely in the presence of NOM.


Asunto(s)
Adsorción , Carbón Orgánico/química , Compuestos Orgánicos/química , Hidrocarburos Aromáticos/química , Concentración de Iones de Hidrógeno , Cinética , Conformación Molecular , Tamaño de la Partícula
14.
Environ Int ; 137: 105586, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086082

RESUMEN

Cannabinoids are incipient contaminants with limited literature in the context of water treatment. With increasing positive public opinion toward legalization and their increasing use as a pharmaceutical, cannabinoids are expected to become a critical class of pollutant that requires attention in the water treatment industry. The destructive removal of cannabinoids via chlorination and other oxidation processes used in drinking water and wastewater treatment requires careful investigation, because the oxidation and disinfection byproducts (DBPs) may pose significant risks for public health and the environment. Understanding transformation of cannabinoids is the first step toward the development of management strategies for this emerging class of contaminant in natural and engineered aquatic systems. This perspective reviews the current understanding of cannabinoid occurrence in water and its potential transformation pathways during the passage through drinking water and wastewater treatment systems with chlorination process. The article also aims to identify research gaps on this topic, which demand attention from the environmental science and engineering community.


Asunto(s)
Cannabinoides , Contaminantes Químicos del Agua , Purificación del Agua , Cannabinoides/química , Desinfección , Halogenación , Aguas Residuales
15.
RSC Adv ; 10(65): 39931-39942, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35515381

RESUMEN

Alloys or smelted metal mixtures have served as cornerstones of human civilization. The advent of smelted copper and tin, i.e., bronze, in the 4th millennium B.C. in Mesopotamia has pioneered the preparation of other metal composites, such as brass (i.e., mixture of copper and zinc), since the bronze age. The contemporary use of these alloys has expanded beyond using their physical strength. The catalytic chemistry of micron-scale brass or copper-zinc alloy can be utilized to effectively degrade emerging contaminants (ECs) in water, which are presenting significant risks to human health and wildlife. Here, we examine the photocatalytic activity of a commercially available micro-copper-zinc alloy (KDF® 55, MicroCuZn), made with earth abundant metals, for oxidative removal of two ECs. The micron-scale brass is independently characterized for its morphology, which confirms that it has the ß-brass phase and that its plasmonic response is around 475 nm. Estriol (E3), a well-known EC, is removed from water with ultraviolet (UV) radiation catalyzed by MicroCuZn and H2O2-MicroCuZn combinations. The synergy between H2O2, UV, and MicroCuZn enhances hydroxyl radical (˙OH) generation and exhibit a strong pseudo-first-order kinetic degradation of E3 with a decay constant of 1.853 × 10-3 min-1 (r 2 = 0.999). Generation of ˙OH is monitored with N,N-dimethyl-4-nitrosoaniline (pNDA) and terephthalic acid (TA), which are effective ˙OH scavengers. X-ray photoelectron spectroscopy analysis has confirmed ZnO/CuO-Cu2O film formation after UV irradiation. The second EC studied here is Δ9-tetrahydrocannabinol or THC, a psychotropic compound commonly consumed through recreational or medicinal use of marijuana. The exceptionally high solids-water partitioning propensity of THC makes adsorption the dominant removal mechanism, with photocatalysis potentially supporting the removal efficacy of this compound. These results indicate that MicroCuZn can be a promising oxidative catalyst especially for degradation of ECs, with possible reusability of this historically significant material with environmentally-friendly attributes.

16.
Chemosphere ; 229: 515-524, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31100622

RESUMEN

In this study, adsorption kinetics of phenanthrene (PNT) and trichloroethylene (TCE) by a graphene nanosheet (GNS), a graphene oxide nanosheet (GO), a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based activated carbons (ACs) (F400 and HD3000) were examined in distilled and deionized water (DDW) and under natural organic matter (NOM) preloading conditions. The results showed the times needed for the adsorption of PNT and TCE to reach apparent equilibrium (i.e., ≤3% change per day) followed the order of GO ≥ MWCNT > GNS > SWCNT ∼ HD3000∼F400 and SWCNT > GNS ∼ HD3000 > F400 ∼ MWCNT > GO, respectively. The pseudo second order model successfully represented kinetics data for three classes of carbonaceous adsorbents. The Weber-Morris intraparticle diffusion model indicated three steps adsorption process for PNT and two step adsorption for TCE. In addition, the times needed to reach apparent equilibrium for the adsorption of PNT and TCE in the presence of hydrophobic (HPO) and hydrophilic (HPI) NOM solutions increased for all adsorbents (except for GO). In general, both NOM showed similar impacts on the adsorption rates of PNT and TCE. Aggregation of both GNS and CNTs rapidly occurred during initial couple hours of contact time during preloading, and spiking both PNT and TCE further increased their aggregation.


Asunto(s)
Carbón Orgánico/química , Grafito/química , Nanotubos de Carbono/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Carbón Mineral , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Fenantrenos/aislamiento & purificación , Tricloroetileno/aislamiento & purificación
17.
Acc Chem Res ; 52(5): 1196-1205, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30958672

RESUMEN

Since first hypothesizing the existence of nanobubbles (NBs) in 1994, the empirical study of NB properties and commercialization of NB generators have rapidly evolved. NBs are stable spherical packages of gas within liquid and are operationally defined as having diameters less than 1000 nm, though they are typically in the range of 100 nm in one dimension. While theories still lack the ability to explain empirical evidence for formation of stable NBs in water, numerous NB applications have emerged in different fields, including water and wastewater purification where NBs offer the potential to replace or improve efficiency of current treatment processes. The United Nations identifies access to safe drinking water as a human right, and municipal and industrial wastewaters require purification before they enter water bodies. These protections require treatment technologies to remove naturally occurring (e.g., arsenic, chromium, fluoride, manganese, radionuclides, salts, selenium, natural organic matter, algal toxins), or anthropogenic (e.g., nitrate, phosphate, solvents, fuel additives, pharmaceuticals) chemicals and particles (e.g., virus, bacteria, oocysts, clays) that cause toxicity or aesthetic problems to make rivers, lakes, seawater, groundwater, or wastewater suitable for beneficial use or reuse in complex and evolving urban and rural water systems. NBs raise opportunities to improve current or enable new technologies for producing fewer byproducts and achieving safer water. This account explores the potential to exploit the unique properties of NBs for improving water treatment by answering key questions and proposing research opportunities regarding (1) observational versus theoretical existence of NBs, (2) ability of NBs to improve gas transfer into water or influence gas trapped on particle surfaces, (3) ability to produce quasi-stable reactive oxygen species (ROS) on the surface of NBs to oxidize pollutants and pathogens in water, (4) ability to improve particle aggregation through intraparticle NB bridging, and (5) ability to mitigate fouling on surfaces. We conclude with key insights and knowledge gaps requiring research to advance the use of NBs for water purification. Among the highest priorities is to develop techniques that measure NB size and surface properties in complex drinking and wastewater chemistries, which contain salts, organics, and a wide variety of inorganic and organic colloids. In the authors' opinion, ROS production by NB may hold the greatest promise for usage in water treatment because it allows movement away from chemical-based oxidants (chlorine, ozone) that are costly, dangerous to handle, and produce harmful byproducts while helping achieve important treatment goals (e.g., destruction of organic pollutants, pathogens, biofilms). Because of the low chemical requirements to form NBs, NB technologies could be distributed throughout rapidly changing and increasingly decentralized water treatment systems in both developed and developing countries.


Asunto(s)
Nanoestructuras/química , Ozono/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Radical Hidroxilo/química
18.
Sci Total Environ ; 654: 28-34, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439691

RESUMEN

The Linear Solvation Energy Relationships (LSER) technique was applied in the present study for predicting models of organic compounds (OCs) adsorption by Graphene and Graphene oxide (GO), and the results were compared with those of multi-walled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT). Adsorption database of 38 OCs (28 aromatic and 10 aliphatic) for Graphene and 69 OCs (59 aromatic and 10 aliphatic) for GO were collected from the literature and our laboratory. The r2 of the LSER models on the adsorption of aromatic OCs by Graphene and GO at three different equilibrium concentrations gradually increased up to OC molecular weight of 400 g/mol, after which a declining trend was observed for GO, while there was no visible change for Graphene. Among descriptors for all LSER models, V (molecular volume) and B (hydrogen bond accepting) for Graphene nanosheets (GNS) and carbon nanotubes (CNT) were the most significant descriptors (p values ≤ 0.05). B term had high value and was negatively correlated with adsorption of all OCs by Graphene (-1.24 to -9.45), GO (-0.55 to -9.31), SWCNT (-0.10 to -5.38) and MWCNT (-1.24 to -1.85). LSER successfully trained models for adsorption of OCs by GNS, and model coefficients were dependent on adsorbent type and OC properties.

19.
Water Res ; 126: 385-398, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987890

RESUMEN

Graphene nanosheets (GNS) such as graphenes and graphene oxides (GOs) have been widely investigated as next-generation adsorbents in both water and wastewater treatment processes due to their unique physicochemical properties and their affinity towards different classes of organic contaminants (OCs). In the last five years, more than 40 articles investigating adsorption of different classes of OCs by graphene and GO were published in peer-reviewed journals. Adsorption mechanisms were controlled by molecular properties of OCs (e.g., aromatic vs aliphatic, molecular size and hydrophobicity), characteristics of adsorbents (e.g., surface area, pore size distribution, and surface functional groups), and background solution properties (e.g., pH, ionic strength, surfactants, NOM, and temperature). This literature survey includes: (i) a summary of adsorption of OCs by GNS, (ii) a comprehensive discussion of the mechanisms and factors controlling the adsorption of OCs by GNS and a comparison of their adsorption behaviors with those of CNT. This literature survey also identifies future research needs and challenges on the adsorption of OCs by GNS.


Asunto(s)
Grafito/química , Nanoestructuras/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Concentración Osmolar , Óxidos
20.
Environ Sci Technol ; 51(16): 9288-9296, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28700222

RESUMEN

Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.


Asunto(s)
Nanotubos de Carbono , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Adsorción , Animales , Disponibilidad Biológica , Peces , Nanoestructuras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...